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Using large-scale numerical simulations and extensive sampling, we analyze the scaling properties of the
crack-cluster distribution and the largest crack-cluster distribution at the peak load. The simulations are per-
formed using both two-dimensional and three-dimensional random fuse models. The numerical results indicate
that in contrast with the randomly diluted networks �percolation disorder�, the crack-cluster distribution in the
random fuse model at the peak load follows neither a power law nor an exponential distribution. The largest
crack-cluster distribution at the peak load follows a lognormal distribution, and this is discussed in the context
of whether there exists a relationship between the largest crack-cluster size distribution at peak load and the
fracture strength distribution. Contrary to popular belief, we find that the fracture strength and the largest
crack-cluster size at the peak load are uncorrelated. Indeed, quite often, the final spanning crack is formed not
due to the propagation of the largest crack at the peak load, but instead due to coalescence of smaller cracks.
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I. INTRODUCTION

Fracture properties and the breakdown behavior of qua-
sibrittle materials are very sensitive to the microstructural
details of the material �1�. Indeed, in quasibrittle materials
such as ceramics, the fracture strength distribution is usually
dominated by the size and spatial distribution of microc-
racks. Traditionally, Weibull and �modified� Gumbel distri-
butions based on the weakest-link approach have been
widely used to describe the strength of brittle materials.
These distributions naturally arise from extreme-value statis-
tics of defect cluster distributions based on the following
assumptions �2�: �1� defect clusters are independent of each
other, i.e., they do not interact with one another; �2� system
failure is governed by the weakest-link hypothesis; and �3�
there exists a critical defect cluster size below which the
system does not fail, and it is possible to relate the critical
size of a defect cluster to the material strength. In particular,
if the defect cluster size distribution is described by a power
law, then the fracture strength obeys the Weibull distribution,
whereas an exponential defect cluster size distribution leads
to the Gumbel distribution for fracture strengths �3–6�.

In this sense, crack-cluster distributions and, in particular,
the largest crack-cluster distribution are of special interest
due to the relation that exists between the largest crack-
cluster and the fracture strength distributions �3–6�. In gen-
eral, one could postulate that the size scaling and strength
distribution are dictated by the statistics of the largest crack
present in the system, which follow naturally from the dis-
tribution created by the damage accumulation up to the peak
load.

In the case of randomly diluted disorder �percolation dis-
order� problems, the defect cluster size distribution is expo-
nential far away from the percolation threshold and follows a
power law close to the percolation threshold �7�. Conse-

quently, in the randomly diluted disorder systems, in general,
a Gumbel distribution better fits the fracture strengths distri-
bution far away from the percolation threshold and a Weibull
distribution provides a better fit close to the percolation
threshold �3–6,8–13�. On the other hand, in broadly disor-
dered materials, the damage accumulation is nontrivial, and
is controlled by two competing aspects; namely, the disorder
and the stress concentration effects around the crack-clusters.
Consequently, at the peak load, the crack-cluster size distri-
bution that evolved under the applied stress field may be
quite different from the initial defect cluster size distribution
of randomly diluted networks. It has been shown in Ref. �14�
that neither the Weibull nor the modified Gumbel distribu-
tions may represent an adequate fit for the fracture strength
distribution of broadly disordered materials.

In this regard, the relevant questions that are addressed in
this paper are �i� what kind of distribution is followed by the
crack-clusters in the strong disorder case just before the ap-
pearance of an unstable crack �i.e., at the peak load�, and �ii�
whether there exists a relationship between the distribution
of the largest crack-cluster size at peak load and the fracture
strength distribution?

The paper is organized as follows: in Sec. II we define the
very well-studied random fuse model �RFM�, which is used
to study the crack-cluster distributions in both 2D triangular
and 3D cubic lattice systems. In Sec. III, we report the crack-
cluster distributions and the largest crack-cluster distribution
for both 2D and 3D lattice systems and in Sec. IV we sum-
marize the relation between the crack-cluster, largest crack
size, and fracture strength distributions.

II. THE RANDOM FUSE MODEL

In the random thresholds fuse model �15–18�, the lattice is
initially fully intact with bonds having the same conduc-
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tance, but the bond breaking thresholds t are randomly dis-
tributed based on a thresholds probability distribution, p�t�.
The burning of a fuse occurs irreversibly, whenever the elec-
trical current in the fuse exceeds the breaking threshold cur-
rent value, t, of the fuse. Periodic boundary conditions are
imposed in the horizontal directions to simulate an infinite
system and a constant voltage difference V is applied be-
tween the top and the bottom of the lattice system bus bars.

Numerically, a unit voltage difference V=1 is set between
the bus bars and the Kirchhoff equations are solved to deter-
mine the current flowing in each of the fuses. Subsequently,
for each fuse j, the ratio between the current ij and the break-
ing threshold tj is evaluated, and the bond jc having the larg-
est value, maxjij / tj, is irreversibly removed �burnt�. The cur-
rent is redistributed instantaneously after a fuse is burnt
implying that the current relaxation in the lattice system is
much faster than the breaking of a fuse. Each time a fuse is
burnt, it is necessary to recalculate the current redistribution
in the lattice to determine the subsequent breaking of a bond.
The process of breaking of a bond, one at a time, is repeated
until the lattice system falls apart. In this work, we assume
that the bond breaking thresholds are distributed based on a
uniform probability distribution, which is constant between 0
and 1.

Large-scale numerical simulations of fracture using fuse
networks have been limited to smaller system sizes due to
the high computational cost associated with solving a new
large set of linear equations every time a new lattice bond is
broken. Consequently, previous studies on scaling properties
of crack-cluster distributions and their moments have been
limited to numerical results obtained using smaller lattice
system sizes �for example, L=128 in 2D� �19�. The authors
have developed a rank-1 sparse Cholesky factorization
downdating the algorithm for simulating fractures using dis-
crete lattice systems �20�. In comparison with the Fourier

accelerated iterative schemes used in earlier studies for the
modeling lattice breakdown �21�, this algorithm significantly
reduced the computational time required for solving large
lattice systems. Using this numerical algorithm, we were
able to investigate crack-clusters in larger lattice systems
�e.g., L=1024 in 2D�.

Although the sparse direct solvers presented in �20� are
superior to iterative solvers for analyzing 2D lattice systems,
the memory demands brought about by the amount of fill in
during the sparse Cholesky factorization favor iterative solv-
ers for analyzing 3D lattice systems. The authors have devel-
oped an algorithm based on a block-circulant preconditioned
conjugate gradient �CG� iterative scheme �22� for simulating

FIG. 1. �Color online� Crack-clusters in a typical simulation of a
3D cubic lattice system of size L=64 �close to failure�. Only clus-
ters with sizes greater than 10 are shown in the figure.

FIG. 2. �Color online� Damage cluster distribution at the peak
load in 2D triangular and 3D cubic lattices. �a� 2D triangular lattice
systems L= �24,32,64,128,256,512,1024� �top�. �b� 3D cubic lat-
tice systems L= �10,16,24,32,48� �bottom�. p�s ,L� denotes the
probability density function and s denotes the damage cluster size.
Power-law fits p�s ,L���s−�−1 are shown in �a� and �b�, and the
corresponding exponential fits p�s ,L��� exp�−�s� are shown in
the inset. The cluster distribution data for different lattice system
sizes do not collapse on to a single straight line as it should, if the
data were to follow either a power-law or an exponential
distribution.
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3D random fuse networks. The block-circulant precondi-
tioner was shown to be superior compared with the optimal
point-circulant preconditioner for simulating 3D random fuse
networks �22�. Since the block-circulant and optimal point-
circulant preconditioners achieve favorable clustering of ei-
genvalues �in general, the more clustered the eigenvalues are,
the faster the convergence rate is�, in comparison with the
Fourier accelerated iterative schemes used for the modeling
lattice breakdown �23�, this algorithm significantly reduced
the computational time required for solving large lattice sys-
tems.

In summary, we have used the sparse Cholesky rank-1
downdating algorithm �20� for 2D lattice simulations, and
the block-circulant preconditioner �22� based CG for 3D lat-
tice simulations. For many lattice system sizes, the number
of sample configurations, Nconfig, used are extremely large in
order to reduce the statistical error in the numerical results.
In particular, in the case of 2D RFM simulations, we have
used Nconfig=50 000 for L=4,8 ,16,24,32,64, and Nconfig
=12000,1200,200,10 for L=128,256,512,1024, respec-
tively. Similarly, in the case of 3D RFM simulations, we
used Nconfig=40000,3840,512,128,32,11 for L
=10,16,24,32,48,64, respectively.

III. CRACK-CLUSTER DISTRIBUTION

In the following, the crack-cluster distribution and the
largest crack distribution are examined at the peak load.
Characterization of these distributions is important since
these distributions determine the type of distribution fol-
lowed by the fracture strength �18�. Figure 1 presents crack-
clusters in a typical simulation of a 3D cubic lattice system
of size L=64. As mentioned already, a power-law crack-
cluster size distribution at the peak load leads to a Weibull
fracture strength distribution, whereas an exponential crack-
cluster size distribution at the peak load leads to a modified
Gumbel-type fracture strength distribution.

Figure 2 presents the crack-cluster size distribution at the
peak load in various 2D and 3D RFM lattice systems. The
plots indicate that simple power-law and exponential repre-
sentations are not adequate since the cluster distribution data
for different lattice system sizes does not collapse on to a
single straight line as it should, if the data were to follow
either a power-law or an exponential distribution.

In the following, we investigate the distribution of the
largest crack sizes at peak loads. Figure 3 presents the cumu-
lative probability distribution of the largest cluster sizes at
the peak load for various system sizes. The collapse of these
distributions in both 2D and 3D lattices, for various system
sizes, indicates that the largest crack size distribution at peak
load follows a location-based probability distribution. That
is, the cumulative distribution P�sp ,L� of the largest cluster
sizes sp �the subscript p refers to quantities at peak load� is
given by

P�sp,L� = �� sp − �

�
	 = ��z� , �1�

where z
�sp−�� /�, � and � denote the location and scale
parameters of the distribution, and � is any cumulative prob-
ability function such that 0���1.

The nonsymmetry of the plots in Figs. 3�a� and 3�b�
clearly indicate that the largest crack-cluster distribution at
the peak load is not normally distributed. On the other hand,
the largest and smallest extreme value distributions �LEV
and SEV, respectively� are given by

�LEV�z� = exp�− exp�− z�� , �2�

�SEV�z� = 1 − exp�− exp�z�� . �3�

The corresponding mean and standard deviations of LEV are
given by �p=�+�� and 	p

2 =�2
2 /6, where �=0.5772 is the
Euler constant. Similarly, the mean and standard deviation of
SEV are given by �p=�−�� and 	p

2 =�2
2 /6. It should be
noted that there exists a close relationship between LEV
and SEV: if a random variable Z�LEV�� ,��, then −Z

FIG. 3. �Color online� Cumulative probability distribution
P�sp ,L� for largest crack-cluster size sp at peak load. �a� 2D trian-
gular lattice systems L= �24,32,64,128,256,512� �top�. �b� 3D cu-
bic lattice systems L= �10,16,24,32,48� �bottom�. �p and 	p de-
note the mean and standard deviation of the largest crack size at
peak load, and are related to the location and scale parameters of
the probability distribution �see Eq. �1��.
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�SEV�−� ,�� and �LEV
−1 �p�=−�SEV

−1 �1− p�, where p refers to
probability and 0� p�1. Figure 4 presents the reparam-
etrized forms LEV and SEV distribution fits for the largest
crack-cluster size at peak loads. Note that in the plots of Fig.
4, we have used �p and 	p instead of the location and scale
parameters � and �. However, this only scales and shifts all
of the plots in Fig. 4 equally, and hence has no effect on the
collapse of the data. The collapse and linearity of the data in
the reparametrized LEV representation suggest that the larg-
est crack-cluster size distribution may adequately be de-
scribed by a LEV distribution. On the other hand, significant
nonlinearity can be observed in the inset of Fig. 4 indicating
that the SEV distribution may not be an adequate fit for the
largest crack-cluster distribution at the peak load.

On the other hand, a reparametrized lognormal distribu-
tion as shown in Fig. 5 provides an excellent fit for the larg-
est crack-cluster distribution at the peak load. The collapse of
the data as well as linearity of the plots in Fig. 5 indicate the
adequacy of the lognormal distribution for representing the
largest crack-cluster distribution, albeit a minute deviation
from the straight line behavior can be seen in Fig. 5�b� for
3D lattice systems. In comparison, a Weibull fit as shown in
the inset of Figs. 5�a� and 5�b� �a reparametrized plot� is
clearly inadequate to represent the largest cluster size distri-
bution data at the peak load. We have analyzed the adequacy
of these various distributions to our data using the Akaike’s
information criterion �24�. These results indicate that lognor-

FIG. 4. �Color online� Reparametrized forms of the largest ex-
treme value �LEV� and smallest extreme value �SEV� distibution
fits for the largest crack-cluster size at the peak load. A
=−ln�−ln(P�sp ,L�)� for LEV, and A=ln�−ln(1− P�sp ,L�)� for
SEV distrbutions. �a� 2D triangular lattice systems
L= �24,32,64,128,256,512� �top�. �b� 3D cubic lattice systems L
= �10,16,24,32,48� �bottom�. The SEV distribution fits for the data
are shown in the inset.

FIG. 5. �Color online� Reparametrized form of lognormal fits
for the largest crack-cluster size at the peak load. �a� 2D triangular
lattice systems L= �24,32,64,128,256,512� �top�. �b� 3D cubic
lattice systems L= �10,16,24,32,48� �bottom�. �nor�z�
=�−�

z �1/�2
�exp�−u2 /2�du denotes the cumulative normal distri-
bution function, and �p

LN and 	p
LN refer to the mean and the standard

deviation of the logarithm of largest cluster sizes, sp, at peak load.
The Weibull distribution fits for the data are shown in the inset
�A=ln�−ln(1− P�sp ,L�)��. Significant nonlinarity of the plots in the
inset indicates that the Weibull distribution is not an adequate fit.
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mal distribution �shown in Fig. 5� is a better fit compared
with the LEV distribution fit shown in Fig. 4. We have also
analyzed logistic and log-logistic distributions to fit the larg-
est crack-cluster distribution; however, these distributions do
not fit the data as well as the lognormal distribution does.

It is interesting to note that in the case of broadly disor-
dered materials, the fracture strength distribution also fol-
lows a lognormal distribution �14�. Assuming that the stress
concentration around the largest crack-cluster is given by a
power law �with any power exponent as it is irrelevant what
the value of the exponent is�, it could be argued that the the
largest crack-cluster size distribution and the fracture
strength distribution are consistent with one another since the
power of a lognormal distribution is also a lognormal distri-
bution. However, the data in Fig. 6, wherein the largest
crack-cluster size at the peak load is plotted against the cor-
responding fracture strength, clearly show that the largest
crack-cluster size at the peak load and the fracture strength
are uncorrelated. In many of the simulations, the final span-
ning crack is formed due to coalescence of smaller cracks
and not due to the propagation of the largest crack at peak
loads �see Fig. 7�. Indeed, out of 200 samples of 2D RFM
simulations of system size L=512, only 89 times the largest
crack at peak loads propagated into a spanning crack at fail-
ure, whereas in all other cases, the final spanning crack is
formed due to the coalescence of smaller cracks. This prob-
ably explains why the largest crack-cluster size at the peak
load is not correlated with the fracture strength.

IV. CONCLUSIONS

In this paper, we have tried to address two relevant ques-
tions pertaining to crack-cluster distributions in broadly dis-
ordered materials. First, what kind of distribution is followed

by crack-clusters just before the appearance of an unstable
crack �i.e., at the peak load�, and second, whether there exists
a relationship between the distribution of the largest crack-
cluster size at peak loads and the fracture strength distribu-
tion?

To this end, we have analyzed the crack-cluster distribu-
tion and the largest crack-cluster size distribution at the peak
load using both 2D and 3D random fuse models. The nu-

FIG. 6. �Color online� Largest crack-cluster size at the peak load
versus the fracture strength. In the 2D RFM model, fracture strength
is defined as the ratio of the peak current and the system size, L.
The � symbols correspond to 2D RFM data with L=256 and the
triangles correspond to 2D RFM data with L=512. Clearly, no or
very small correlation exists between the largest cluster size at the
peak load and the peak load �or fracture strength�.

FIG. 7. �Color online� Crack-clusters at peak loads �top� and at
failures �bottom� in a 2D RFM simulation of system size L=512.
The figures show all crack-clusters whose size is greater than or
equal to 5. The largest crack at the peak load is shown by the arrow.
The final crack at failure is formed due to coalescence of smaller
cracks, and not due to the propagation of the largest crack at the
peak load.
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merical results suggest that the crack-cluster distribution ob-
tained at the peak load in the random fuse models is different
from that obtained in randomly diluted networks �percolation
disorder� in the sense that neither a power law nor an expo-
nential distribution represents an adequate fit. The largest
crack-cluster distribution follows better with a lognormal
distribution. Although at first thought, this lognormal distri-
bution of largest crack-cluster size at the peak load appears
to be consistent with the lognormal distribution of fracture
strengths as proposed in Ref. �14� �if one assumes that the
stress concentration around the largest crack-cluster is given
by a power law�, a close examination reveals that the largest
crack-cluster size and the fracture strength data are uncorre-
lated.
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